Коррекция данных спутникового СВЧ-радиометрического зондирования влаго- и водозапаса облачной атмосферы с учетом результатов наземных микроволновых измерений

Егоров Д.П., Кутуза Б.Г.

Институт радиотехники и электроники им. В.А. Котельникова РАН

микроволновой радиометр

амма направленности

Рис. 1. Дистанционное зондирование разрывной облачности

подстилающая поверхн

Введение

Размеры полей зрения антенн современных спутниковых СВЧ-радиометров составляют от 5х5 до 60х60 км в зависимости от длины волны. При решении обратных задач, в том числе при восстановлении интегральных параметров влаго- и водосодержания атмосферы из космоса, в расчетах используется средняя по полю зрения величина радиояркостной температуры, что в отсутствие дополнительной корректировки этой величины равносильно предположению о равномерном распределении жидкокапельной влаги (водности) облаков по горизонтали.

Такое предположение справедливо, однако, лишь в случаях слоистой облачности.

В работе [1] авторы путем прямого моделирования полей распределения разрывной облачности и последующего расчета уходящего излучения К-диапазона над гладкой водной поверхностью показывают, что это предположение может приводить к относительным ошибкам восстановления средних по полю зрения величин влаго- и водозапаса на уровне 15% и более.

[1] Dobroslav P. Egorov, Yaroslav A. Ilyushin, Boris G. Kutuza. The Influence of Cumuli Distribution in Satellite Microwave Radiometer FOV on the Accuracy of Atmospheric Moisture Content Retrieval // IEEE Transactions on Geoscience and Remote Sensing. 2024. Vol. 62 (4103410).
P. 1-10. URL: https://doi.org/10.1109/TGRS.2024.3383315

Высотный профиль водности облака

Высотный профиль водности кучевого облака может быть аппроксимирован как (Мазин, 1972)

$$w(\xi) = w(\xi_0) \frac{\xi^{\mu_0} (1-\xi)^{\psi_0}}{\xi^{\mu_0} (1-\xi_0)^{\psi_0}} = \frac{W}{H} \cdot \frac{\Gamma(2+\mu_0+\psi_0)}{\Gamma(1+\mu_0)\Gamma(1+\psi_0)} \xi^{\mu_0} (1-\xi)^{\psi_0}, \tag{1}$$

где $\xi = h/H$ – приведенная высота внутри облака, H – мощность облака (км), W – (интегральный) водозапас облака (кг/м²), $w(\xi)$ – водность облака (кг/м³), $w(\xi_0)$ – максимальная водность, ξ_0 – приведенная высота максимальной водности, μ_0 и ψ_0 – безразмерные параметры. Согласно [3], значения параметров равны $\mu_0 = 3.27$, $\psi_0 = 0.67$, $\xi_0 = 0.83$.

Рис. 2 – а) облако типа Cu cong, имеющее характерный вид наковальни; б) модель высотного профиля водности внутри облака мощностью (1) H = 1 км, (2) 3 км, (3) 5 км. Высота основания облаков принята равной 1 км.

Зависимость водозапаса *W* от мощности *H* облака приближенно аппроксимируется формулой

$$W = 0.132574 \cdot H^{2.30215}.$$
 (2)

Нелинейность взаимосвязи Тя и водности облака

Рис. 4 – Разность в яркостных температурах, обусловленная особенностями распределения водности по высоте

Модель Планка

По результатам обработки обширной базы стереоскопических фотографий облачности в районе полуострова Флорида, США (V.G. Plank, 1969), была предложена следующая модель

$$N = K e^{-\alpha D}, \quad D_{\min} < D < D_{\max}, \tag{3}$$

где D – эквивалентный диаметр облака (км), N – количество облаков с диаметрами в интервале от D до dD (км⁻¹), D_{\min} и D_{\max} – минимальный и максимальный диаметры облаков в ансамбле (км), K – нормировочный коэффициент (км⁻¹), α – параметр, зависящий от времени суток и различных локальных климатических условий (км⁻¹).

Рис. 5. Снимок от 12 августа 1957 г., 09:44 EST. Флорида, США. Выделенная область составляет 580 кв. миль

где \pmb{D} выбирается из отрезка $[\pmb{D}_{\min}, \pmb{D}_{\max}]$ с некоторым установленным шагом $\pmb{\epsilon}$.

Параметры модели Планка

Можно показать, что

$$S_t = \frac{\pi K \chi}{2\alpha^3},\tag{4}$$

где

$$\chi = -e^{-\alpha D_{\max}} \left[\frac{(\alpha D_{\max})^2}{2} + \alpha D_{\max} + 1 \right] + e^{-\alpha D_{\min}} \left[\frac{(\alpha D_{\min})^2}{2} + \alpha D_{\min} + 1 \right].$$

Пусть A – площадь атмосферной ячейки, а $S_t = p \cdot A$, где p – доля неба, покрытого облаками, причем $0 \le p \le 1$. Тогда

$$K = \frac{2\alpha^3 p \cdot A}{\pi \chi}.$$
 (5)

Анализ накопленной базы снимков позволил также выявить взаимосвязь между эквивалентным диаметром облака **D** и его мощностью (вертикальной протяженностью)

$$H = \eta D \left(\frac{D}{D_{\text{max}}}\right)^{\beta},\tag{6}$$

где η и β – безразмерные параметры, зависящие от текущих погодных условий.

Рис. 6 – Пример пространственной реализации облачного поля, соответствующего статистической модели Планка

Таблица 1. Параметры облачных полей

Код	α, κΜ	D_{max}, км	D _{min} , км	η , безразм.	β , безразм.	Н _{тіп} , км	p , %
T1	9.07	0.805	0.015	0.89	0.0	0.671	6.2
Т2	4.412	1.126	0.015	0.97	0.0	0.701	18
Т3	2.361	2.092	0.015	0.93	-0.1	0.823	26.2
Т4	2.703	2.094	0.023	0.8	0.0	0.914	30.9
Т5	2.051	2.574	0.023	0.85	-0.13	1.113	34.9
Т6	1.398	3.376	0.030	0.93	-0.1	1.067	47.7
T7	1.35	3.733	0.046	1.2	0.0	1.250	30.9
Т8	1.485	4.020	0.061	1.2	0.4	1.372	18.5
Т9	2.485	2.656	0.046	1.3	0.3	1.402	7.2
L1	3.853	1.448	0.015	0.98	0.0	0.549	42.1
L2	1.411	4.026	0.023	0.93	0.3	1.219	64.2
L3	1.485	4.020	0.030	0.76	-0.3	1.372	29

Рис. 7 – Модель В.Г. Планка. Случай «L2» и его модификации. Количественное распределение облаков по их вертикальной протяженности (шкала слева) и вклад облаков различной вертикальной протяженности (мощности) в суммарную площадь покрытого облаками неба (шкала справа). Здесь η и β – параметры модели Планка

Случай «L2»

Оценка систематических ошибок (модель)

Рис. 10 – Зависимость ошибок ΔW_{I}^{cp} (кривая 1) и ΔW_{II}^{cp} (кривая 2) от величины истинного водозапаса W_{uct}^{cp} для типов облачности «L1»-«L3», «T1»-«T9» и модифицированных. Элемент разрешения n x n = 10x10 км

Параметр *р* – доля покрытого облаками неба. Как ΔW_{I}^{cp} , так и ΔW_{II}^{cp} отражают ошибки двухчастотного метода (22.2 и 36 ГГц) при восстановлении среднего по области и х и однако, ΔW_{II}^{cp} содержит водосодержания, ошибки, дополнительную величину обусловленную потерей информации 0 пространственной облачности структуре яркостной вследствие усреднения поля температуры В элементе разрешения спутникового радиометра, в отличие от $\Delta W_{\rm I}^{\rm cp}$.

Наземные измерения спектров Тя

Рис. 11 – Радиометр-спектрометр «Р22М»

Измерения проводились в г. Фрязино Московской области (ФИРЭ РАН).

Таблица 2. Характеристики радиометра-спектрометра.

Характеристика	Значение
Рабочий диапазон частот	18-27.2 ГГц
Разрешение по частоте	200 МГц
Количество спектральных каналов	47
Флуктуационная чувствительность	0.02 K
Время получения полного спектра	около 11 сек.
Угловое разрешение*	5-7°

*пространственное разрешение на высоте 2.1 км – от 183 до 256 м в зависимости от частоты.

Cu med

Рис. 12 — Измерительный сеанс от 09 июля 2019 г., 10:45 — 13:45 UTC+3. Кучевые облака среднего вертикального развития Cu med. Спектры яркостной температуры, К-диапазон.

Cu med

Рис. 13 — Результаты восстановления интегральных параметров влаго- и водосодержания многочастотным методом на основе МНК. Сеанс от 09 июля 2019 г., 10:45 — 13:45 UTC+3, Cu med Многочастотный метод

$$R(Q,W) = \sum_{j=1}^{N} (\tau_{e}(v_{j}) - f(v_{j},Q,W))^{2} \to \min_{Q,W}, \quad (7)$$

$$f(v_j, Q, W) = \tau_0^*(v_j) + k_\rho(v_j) \cdot Q + k_\omega(v_j, t_\omega) \cdot W.$$

Стационарные точки функции R(Q, W):

$$\sum_{j=1}^{N} \left(\tau_e(v_j) - f(v_j, Q, W) \right) \frac{\partial f(v_j, Q, W)}{\partial Q} = 0,$$
$$\sum_{j=1}^{N} \left(\tau_e(v_j) - f(v_j, Q, W) \right) \frac{\partial f(v_j, Q, W)}{\partial W} = 0,$$

ИКИ РАН, Москва, 12 ноября 2024 г.

14

Разметка данных

Рис. 14 — Анализ связанного видеоряда. Алгоритм основан на выделении контуров облаков с применением адаптивной фильтрации и определении текстурных признаков отдельного кадра путем расчета матрицы смежности уровня серого (GLCM)

ИКИ РАН, Москва, 12 ноября 2024 г.

16

Заключение

- Хотя ошибки восстановления зависят от множества факторов и различаются по величине для разных пространственных реализаций облачного поля (в том числе при равном суммарном водозапасе), они, тем не менее, носят систематический характер и могут быть проанализированы статистически.
- Анализ экспериментальных данных наземного СВЧ радиометра-спектрометра P22M, установленного во Фрязинском филиале ИРЭ РАН, за 2019-2024 гг., подтверждает выводы авторов, полученные в предыдущих работах по результатам компьютерного моделирования.
- оценки свидетельствуют о необходимости учета • Полученные пространственной облачности при обработке спутниковых микроволновых данных. структуры Дополнительные количественные и качественные данные об облаках при этом могут быть получены с помощью совместных (и согласованных) спутниковых измерений в видимом, инфракрасном и терагерцовом диапазонах. По оптическим приборам наблюдается верхний слой облачности, определяется ее маска и фазовый состав, высота и температура. Введение этих и других данных в имеющиеся расчетные модели могло бы значительно повысить точность СВЧ-радиометрического восстановления интегральных параметров влаго- и водосодержания атмосферы.

Спасибо за внимание!